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SUMMARY

Neutrophils are important in innate immunity and
acute inflammatory responses. However, the regula-
tion of their recruitment to sites of inflammation has
not been well characterized. Here, we investigated
the kinase PIP5K1C and showed that PIP5K1C defi-
ciency impaired neutrophil recruitment because of
an adhesion defect. PIP5K1C regulated the adhesion
through facilitating RhoA GTPase and integrin
activation by chemoattractants. Integrins could
induce polarization of an isoform of PIP5K1C,
PIP5K1C-90, in neutrophils through intracellular
vesicle transport independently of exogenous che-
moattractant. PIP5K1C-90 polarization was required
for polarized RhoA activation at uropods and
provided an initial directional cue for neutrophil
polarization on the endothelium. Importantly, the
polarization was also required for circumventing the
inhibition of lamellipodium formation by RhoA so
that neutrophils could form leading edges required
for transendothelial migration. Because integrins
are not known to regulate neutrophil polarization,
our study revealed a previously underappreciated
role of integrin signaling in neutrophil regulation.

INTRODUCTION

Neutrophils are one of the key players in acute inflammatory

responses. They play an important role in host defense and

contribute to inflammation-related tissue injuries. During the

inflammation, neutrophils extravasate across the endothelium

that lines the blood vessel wall through a multistep process

(Luo et al., 2007; Rose et al., 2007), including the rolling on and
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subsequent firm adhesion to endothelial cells. In mouse

neutrophils, the b2 integrins are important in mediating the adhe-

sion of neutrophils to endothelial cells. After neutrophils transmi-

grate through the endothelium, they migrate to the sites of injury

and infection in response to chemoattractant gradients. Thus,

understanding the mechanisms for neutrophil recruitment is of

great physiological and pathophysiological significance.

Neutrophils are the most motile cells in higher organisms and

can efficiently interpret and chemotax under a shallow chemoat-

tractant gradient. Although it remains unclear how, these cells

can translate a small chemoattractant gradient into intracellular

biochemical polarization and align the biochemical polarity

with the chemoattractant gradients (Franca-Koh et al., 2007;

Janetopoulos and Firtel, 2008; Rericha and Parent, 2008; Wu,

2005). In neutrophils, the biochemical polarization includes the

localization of molecules such as phosphatidylinositol 3,4,5-tri-

sphosphate and the small GTPases Rac and Cdc42 in the front

and the GTPase RhoA, phosphorylated myosin light chain

(pMLC) (Weiner, 2002; Wu, 2005; Xu et al., 2003), the RhoA

guanine nucleotide exchange factor PDZRhoGEF (Wong et al.,

2007), phosphorylated ezrin-radixin-moesin (pERM) (Lacalle

et al., 2007; Lokuta et al., 2007), and phosphatase and tensin

homolog (PTEN) (Heit et al., 2008; Li et al., 2003, 2005;

Wu et al., 2004) in the back. The biochemical polarization

subsequently leads to cellular polarization into a leading edge

(front) and uropod (back). The leading edge contains lamellipodia

composed of unbundled F-actin, continuous formation of which

provides a driving force for cell locomotion. The uropod contains

actomyosin filaments. Contraction of these filaments canprovide

another locomotive force to push cells forward. Thus far, chemo-

attractant signaling is believed to be exclusively responsible for

regulating the directionality of neutrophil migration.

Phosphatidylinositol 4,5-bisphosphate [PtdIns (4,5)P2] repre-

sents about 1% of plasma membrane phospholipids and is

important in various cellular functions (De Matteis and Godi,

2004; Di Paolo and De Camilli, 2006; Ling et al., 2006). In

mammalian cells, PtdIns (4,5)P2 is primarily synthesized by
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Figure 1. Effect of PIP5K1C Deficiency on Neutrophil Infiltration

In Vivo

(A and B) The peritonitis model. Mice were injected with labeled wild-type (WT)

and Pip5k1c�/� neutrophils. The number of the WT cells (taken as 1) was

compared with that of the mutant cells in the inflamed peritonea. A represen-

tative flow cytometric chart is shown in (A). Summary shown in (B) (n = 3,

Student’s t test).

(C) The gout model. The numbers of neutrophils in the lavages from the

pouches are shown as means ± SEM (n = 4, Student’s t test).
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sequential phosphorylation of PtdIns by two PtdIns kinases,

PI4K and PIP5K1. To date, three mammalian PIP5K1 isoforms

(A, B, and C) have been identified. PIP5K1C has two major

splicing variants: a short 87 kDa protein (PIP5K1C-87) and

a longer one with 28 additional amino acids at its C terminus

(PIP5K1C-90). PIP5K1C-90 was shown to be localized in the

uropods of chemotaxing neutrophils (Lokuta et al., 2007),

whereas PIP5K1B was found in the uropods of polarized human

neutrophil-like HL-60 cells (Lacalle et al., 2007). There are two

reported Pip5k1c�/� mouse lines, both of which show early

lethality (Di Paolo et al., 2004; Wang et al., 2007a).

In this report,we studiedPIP5K1C-deficientmouseneutrophils

and found that PIP5K1C deficiency did not impair neutrophil

chemotactic activities in vitro, but it compromised neutrophil infil-

tration in vivo. In our investigation, we discovered that integrins

could induce PIP5K1C-90 polarization independently of chemo-

attractants. This integrin-inducedPIP5K1C-90polarizationworks

together with chemoattractant signaling in regulating neutrophil

polarization and directionality in vitro and infiltration in vivo.

RESULTS

PIP5K1C Deficiency Impairs Neutrophil Recruitment
In Vivo
To investigate the role of PIP5K1C in neutrophil regulation, we

generated neutrophils lacking PIP5K1C by reconstituting lethally

irradiated mice with fetal liver cells from a Pip5k1c�/� line

(Di Paolo et al., 2004). Neither PIP5K1C mRNA nor protein could

be detected in neutrophils prepared from the transplanted mice

(Figures S1A and S1B available online).

The regulation of PtdIns(4,5)P2 by PIP5K1C in mouse neutro-

phils was examined by visualizing the localization of the phos-

pholipase C d-pleckstrin homology (PLC d-PH) domain, which

binds PtdIns(4,5)P2 in a specific manner (Lemmon et al., 1995).

Most of wild-type neutrophils undergoing chemotaxis exhibited

uropod polarized PLC d-PH GFP distribution (Figure S1C upper

panels andMovie S1). However, in Pip5k1c�/� neutrophils, there

was a lack of increased localization of PLC d-PH-GFP in the

uropods (Figure S1C lower panels and Movie S2), suggesting

that PIP5K1C may be responsible for the increased amount of

PtdIns(4,5)P2 at the uropods.

Next, we investigated the effect of PIP5K1C deficiency on

neutrophil recruitment in vivo by using a peritonitis model. Puri-

fied wild-type neutrophils and Pip5k1c�/� neutrophils were

labeled with different cell tracing dyes or vice versa (Jia et al.,

2007) and mixed at a 1:1 ratio. The mixed cells were injected

into tail veins of wild-type mice, in which acute peritoneal inflam-

mation was induced by intraperitoneal injection of thioglycolate.

Significantly lower numbers of Pip5k1c�/� than wild-type trans-

planted neutrophils were recruited into the peritonea (Figures 1A

and 1B). We next extended our observations to a gout model by

examining the effects of PIP5K1C deficiency in neutrophil

recruitment into preformed air pouches after injection of mono-

sodium urate (MSU) crystals (Chen et al., 2006). There were

significantly lower numbers of neutrophils (CD11b+Ly6G+) in

the lavages from Pip5k1c�/� cell transplanted mice than those

from the wild-type cell transplanted mice (Figure 1C). Thus,

PIP5K1C deficiency impairs the in vivo neutrophil infiltration in

both of the models.
Im
PIP5K1C Deficiency Does Not Impair Neutrophil
Chemotaxis In Vitro
Previous studies with overexpression of PIP5K mutants suggest

that PIP5K including PIP5K1C plays a positive role in regulating

neutrophil chemotaxis (Lacalle et al., 2007; Lokuta et al., 2007).

We found that Pip5k1c�/� cells showed no defects in their direc-

tionality and motility compared to wild-type cells under an fMLP

gradient (Figures 2A and 2B), though the mutant cells appeared

to be more elongated than the wild-type cells (data not shown).

On the contrary, Pip5k1c�/� neutrophils appeared to follow the

chemoattractant gradient more faithfully than the wild-type cells

because they had significantly smaller average directional errors

than thewild-type cells on fibrinogen-coated surface (Figure 2C).

However, this directional error difference became less significant
munity 33, 340–350, September 24, 2010 ª2010 Elsevier Inc. 341
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Figure 2. Effect of PIP5K1C Deficiency on Neutrophil

Chemotaxis

Chemotaxis of wild-type or PIP5K1C-deficient neutrophils in

response to an fMLP gradient was analyzed with a Dunn

Chamber coated with fibrinogen (Fb) or polylysine (P-K).

(A) Cell migration traces of a representative experiment on

a fibrinogen surface. Seven independent experiments with

seven pairs of wild-type and mutant mice were performed.

(B and C) Motility (B), which reflects the speed of cell move-

ment, and average gradient errors (C), which reflect how well

cells follow the chemoattractant gradient, were calculated

from the these migration traces as described in Experimental

Procedures. Mean ± SEM; paired Student’s t test, n = 7.
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on the polylysine surface (Figure 2C). These results in Figure 2C

can also be interpreted to suggest that there is a substantial

difference in gradient errors or directionality between fibrin-

ogen-coated and polylysine-coated surfaces for wild-type

neutrophils, whereas the difference became insignificant for

Pip5k1c�/� cells. Because there may be more integrin activation

in cells on fibrinogen than on polylysine (Kim et al., 2006), these

results imply that there might be a connection between integrins

and PIP5K1C in regulating neutrophil directionality.
Integrins Induce Polarized Localization of PIP5K1C-90
Independently of Chemoattractants
PIP5K1C-90, which is expressed five times more than PIP5K1C-

87 in mouse neutrophils based on quantitative RT-PCR analysis

(data not shown), was shown to polarize in neutrophils upon

fMLP stimulation (Lokuta et al., 2007). In reproducing these find-

ings, we observe that GFP-PIP5K1C-90 could polarize in mouse

neutrophils in the absence of any exogenous chemoattractant

(Figure 3A). Up to 80% of neutrophils expressing GFP-

PIP5K1C-90 showed the polarized localization of PIP5K1C on

the fibrinogen surface compared to less than 20% on the

polylysine surface (Figure 3B). Figure S2A and Movie S3 show

three-dimensional reconstruction of a neutrophil in which GFP-

PIP5K1C-90 is polarized. Moreover, endogenous PIP5K1C-90

could polarize on fibrinogen (Figure S2B). It is important to note

that, in the absence of a chemoattractant, fibrinogen did not

overtly polarize the distribution of F-actin, which was primarily

localized in the cortex (Figure 3A; Figures S2A and S2B). The

differential effects of fibrinogen and polylysine prompted us to

hypothesize that integrins may regulate PIP5K1C-90 polariza-

tion. We therefore tested ICAM-1, a ligand for the b2 integrins
342 Immunity 33, 340–350, September 24, 2010 ª2010 Elsevier Inc.
abundantly found on neutrophils. ICAM-1 could

also induce GFP-PIP5K1C-90 polarization (Fig-

ure S2C). In addition, ICAM-induced polarization

was reduced in neutrophils isolated from a mouse

line in which b2-intergrin is expressed at �10% of

the normal amount (Wilson et al., 1993). Moreover,

a neutralizing b2 integrin antibody or expression of

an integrin dominant-negative mutant, in which the

intracellular domain of the IL-2 receptor was

replaced with the b2 integrin intracellular domain

(Smilenov et al., 1994), inhibited PIP5K1C-90 polar-

ization (Figure 3B; Figure S2C). Thus, integrins,

particularly b2-integrin, are involved in polarized
localization of PIP5K1C-90 inmouse neutrophils. This conclusion

is further confirmed by the fact that neutralizing aL or aM integrin

antibody inhibited ICAM1-induced PIP5K1C-90 polarization

(Figure S2D). Thus, both aLb2 (LFA-1) and aMb2 (MAC-1) integrins

participate in PIP5K1C-90 polarization.

To examine the kinetics of GFP-PIP5K1C-90 polarization, we

acquired time-lapsed images of GFP-PIP5K1C-90-expressing

neutrophils that flowed over fibrinogen-coated surfaces. Polari-

zation appeared to start only when cells stopped or were close to

stopping moving, presumably because of integrin engagement

(Figure 3C; Movies S4 and S5). The polarization process was

completed in 1–2 min. Of note, during this polarization process,

the shape of these cells remained largely round rather than

overtly elongated, as found in chemoattractant-stimulated cells.

Intriguingly, GFP-PIP5K1C-90 always polarized in the alignment

of the cell movement direction in all of the cells we examined. We

also tested neutrophils expressing GFP-PIP5K1C-90 with a flow

chamber coated with mouse endothelial cells. In all of the cells

we observed (n = 35), GFP-PIP5K1C-90 was polarized in general

alignment of the flow direction (Figure 3D). These results

together suggest that the cell movement direction on the

substrate prior to their arrest may provide a directional cue for

GFP-PIP5K1C-90 polarization.

The C Terminus of PIP5K1C-90 Has an Important Role
in Its Polarization
We tested the short splicing variant of PIP5K1C, PIP5K1C-87

(Figure S3A) and showed that it could not polarize (Figure 3B;

Figure S3B), suggesting that the 28 extra amino acids found

only in PIP5K1C-90 are required for integrin-induced polarization.

These 28 amino acids are required for the binding to talin and

adaptin-2 (AP2) proteins, and various point mutations in this
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Figure 3. PIP5K1C-90 Polarization in Mouse Neutrophils

(A) Localization of GFP-PIP5K1C-90 (C90) and F-actin (Alex633-phalloidin

staining) inmouse neutrophils placed on fibrinogen (top) or polylysine (bottom).

(B) Quantification of cells showing polarized distribution of GFP-PIP5K1C-90

and GFP-PIP5K1C-87 (C87) in the presence or absence of a neutralizing b2 in-

tegrin antibody (Ab) on different surfaces. Quantification was done in triplicate,

and at least 50 cells were examined for each data point (mean ± SD, Student’s

t test).

(C) Time-lapsed phase (top) and fluorescence (bottom) images of a represen-

tative GFP-PIP5K1C-90-expressing neutrophil moving on a fibrinogen surface

(n = 8). The arrow indicates themoving direction. Selected images fromMovies

S4 and S5 are shown.

(D) Directionality of GFP-PIP5K1C-90 polarization in neutrophils adhered to

endothelial cells under a flow condition. Thirty-fiveGFP-PIP5K1C-90-express-

ing cells were examined. Eight randomly selected cells are shown.

Scale bars represent 8 mm.
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sequence candisrupt these interactions (Di Paolo et al., 2002; Lee

et al., 2005; Ling et al., 2002; Thieman et al., 2009). We confirmed

that L652S, S650D, Y649F, and W647F mutations disrupted the

interaction of PIP5K1C-90 with the AP2b subunit (Figure S3C),

and these mutations except Y649F also disrupted the interaction

with talin (Figure S3D). Because all of these mutations including
Im
Y649F impaired the polarization (Figure 4A), we suspected that

the interaction of PIP5K1C-90 with AP2 might have an important

role in PIP5K1C-90 polarization upon integrin engagement.

Involvement of Vesicle Transport in PIP5K1C-90
Polarization
AP2 is a key adaptor protein in the formation of intracellular trans-

port vesicles, including those coated with clathrin. The localiza-

tion of AP2 and clathrin relative to that of PIP5K1C-90 in neutro-

phils was examined. AP2 also showed polarized distribution in

neutrophils placed on fibrinogen, but not polylysine, and there

was colocalization of AP2 and PIP5K1C-90 (Figure 4B). Similar

observations were also made with endogenous clathrin

(Figure S3E) and clathrin-GFP (Figure S3F). There is also a partial

colocalization ofb2-integrin andPIP5K1C-90 (FigureS3G). These

results are consistent with the idea of an involvement of vesicle

transport in PIP5K1C-90 polarization. Vesicle transport is regu-

lated by various small GTPases including Arfs (ADP-ribosylation

factor) and Rabs (D’Souza-Schorey and Chavrier, 2006; Myers

and Casanova, 2008). We tested several dominant-negative

(dn) mutants of small GTPases and found that dnArf6, but not

dnArf4 (Figure 4C) or dnRab5 (data not shown), inhibited integ-

rin-dependent PIP5K1C-90 polarization.

Actin filaments also play an important role in vesicle transport

(Myers and Casanova, 2008). Treatment with Cytochalasin D, an

actin polymerization inhibitor, resulted in reduction in GFP-

PIP5K1C-90 polarization on fibrinogen (Figure 4D). Along the

same line, expression of dnRac1, a small GTPase known to stim-

ulate actin polymerization in neutrophils (Gu et al., 2003), also

inhibited PIP5K1C-90 polarization on fibrinogen (Figure 4E).

We also tested pertussis toxin, which inhibits the Gi class of het-

erotrimeric G proteins. It failed to inhibit PIP5K1C-90 polarization

(Figure 4D), further confirming the noninvolvement of these

G proteins in integrin-dependent PIP5K1C-90 polarization. As

a control, the same pertussis toxin treatment abolished fMLP-

induced increases in cytosolic Ca2+ concentrations in the

neutrophils (data not shown). Thus, vesicle transport may be

involved in PIP5K1C-90 polarization.

Phosphorylation of Tyr649 Is Important for PIP5K1C-90
Polarization
The importance of Tyr649, which can be phosphorylated by Src

(Linget al., 2003), inPIP5K1C-90polarization suggestsapossible

involvement of Src in the polarization process. We therefore

tested a Src inhibitor PP2, which inhibited PIP5K1C-90 polariza-

tion on fibrinogen (Figure 4F). Focal adhesion kinase (FAK) was

shown to participate in integrin-mediated Src activation and

PIP5K1C-90 phosphorylation at Tyr649 (Ling et al., 2003).

Expression of two FAK inhibitors, FRNK and Y397F-FAK, in-

hibited PIP5K1C-90 polarization (Figure 4F). Furthermore, RhoB

was shown to be involved in Src activation by integrins (Sandi-

lands et al., 2004). Expression of dnRhoB, but not dnRhoA,

inhibited PIP5K1C-90 polarization (Figure 4E). These results

together support the conclusion that integrin-mediated Src acti-

vation has an important role in PIP5K1C-90 polarization.

Phosphorylation of PIP5K1C-90 at Tyr649 in neutrophils was

further confirmed by using an antibody specific for phosphory-

lated Tyr649. The antibody only recognized PIP5K1C-90 coex-

pressed with an activated Src mutant, but not Y649F mutant or
munity 33, 340–350, September 24, 2010 ª2010 Elsevier Inc. 343
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Figure 4. Involvement of Vesicle Transport

and Tyr Phosphorylation in Integrin-Induced

PIP5K1C-90 Polarization

(A) Quantification of cells showing polarized distri-

bution of GFP-PIP5K1C-90 and its mutants on

surfaces coated with polylysine or fibrinogen.

Quantification was done in triplicate, and at least

50 cells were examined for each data point

(mean ± SD, Student’s t test).

(B) Localization of endogenous AP2 and GFP-

PIP5K1C-90 inmouse neutrophils placed on fibrin-

ogen (top) or polylysine (bottom). Representative

cells are shown, n = 15.

(C–F) Effects of chemical inhibitors and dominant-

negative mutants on GFP-PIP5K1C-90 polariza-

tion. Neutrophils were cotransfected with GFP-

PIP5K1C-90 and LacZ or a dominant-negative

mutant of Arf4 (dnArf4), Arf6 (dnArf6), Rac1

(dnRac), RhoA (dnRhoA), RhoB (dnRhoB), FRNK,

or Y397F-FAK, or treated with Cytochalasin D,

PP2, Y-27632, and PTX. Quantification was done

in triplicate, and at least 50 cells were examined

for each data point (mean ± SD, Student’s t test).

(G and H) Localization of GFP-PIP5K1C-90 and

anti-phosphorylated PIP5K1C-90 (pTyr649) immu-

nostaining in transfected mouse neutrophils

placed on fibrinogen (G) or polylysine (H). Repre-

sentative cells are shown, n = 15. Scale bars repre-

sent 8 mm.
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PIP5K1C-87 (Figure S3H). Immunostaining shows that Tyr649-

phosphorylated PIP5K1C was detected at the same location

as polarized PIP5K1C-90 in neutrophils (Figures 4G and 4H).

Because the phospho-mimetic mutation of Tyr649 to Glu

showed reduced interaction with AP2-b (Figure S3C), it is

possible that Tyr649-phosphoryated PIP5K1C-90 also has

a reduced affinity for AP2-b. Thus, Tyr649 phosphorylation

may lead to the dissociation of PIP5K1C-90 from AP2 so that

AP2 can be recycled while PIP5K1C stays. This idea is consis-

tent with the partial colocalization of AP2 or clathrin with

PIP5K1C-90 (Figure 4B; Figures S3E and S3F).
Integrin-Induced PIP5K1C-90 Polarization
Is Colocalized with Chemoattractant-Induced
Uropod Markers
Because integrins induce PIP5K1C-90 polarization indepen-

dently of chemoattractants, it would be important to know the
344 Immunity 33, 340–350, September 24, 2010 ª2010 Elsevier Inc.
relationship of this integrin-induced

polaritywith the one induced by chemoat-

tractants. As shown in a previous study

(Lokuta et al., 2007), GFP-PIP5K1C-90 is

colocalized with uropodmakers including

pERM (Figure S4A) and pMLC (Fig-

ure S4B) upon fMLP stimulation. Because

fibrinogen alone could not induce polar-

ized distribution of pMLC (Figure S4C) or

GFP-moesin (Figure S4D) (the localization

of GFP-moesin correlates with phosphor-

ylated ERM localization in neutrophils

[Lacalle et al., 2007; Lokuta et al., 2007]),
integrin-regulated PIP5K1C-90 polarization does not depend

on either pERM or pMLC polarization. These observations are

consistent with the fact that neither dnRhoA (Figure 4E) nor the

Rho kinase inhibitor Y-27632 (Figure 4D) inhibited PIP5K1C-90

polarization. RhoA, a small GTPase, is localized at the uropod

of chemoattractant-polarized neutrophils and regulates actomy-

osin structure formation and functions including MLC phosphor-

ylation via Rho kinase (Li et al., 2003, 2005; Wheeler and Ridley,

2004; Xu et al., 2003). Thus, although integrin-induced

PIP5K1C-90 polarization is colocalized with the uropod markers

induced by chemoattractants, it does not depend on these che-

moattractant-regulated uropod markers.
PIP5K1C-90 Polarization Determines Initial Neutrophil
Polarity and Directional Responses
Knowing that the integrin-induced PIP5K1C-90 polarization is

independent of chemoattractant signaling, we investigated the
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Figure 5. Effect of Integrin-Induced Polarization of PIP5K1C-90 on

Neutrophil Responses to Directional Chemoattractant Stimulation

(A) Neutrophils coexpressing RFP-PIP5K1C-90 and YFP-actin were allowed to

adhere to fibrinogen-coated coverslips. An fMLP gradient was applied with

a micropipette. Images were recorded at 15 s intervals, and selected images

from Movies S6 and S7 are shown. Arrows denote the locations of the micro-

pipettes, whereas arrowheads denote the pseudopods. Scale bars represent

8 mm.

(B) The times for neutrophils to form singular consolidated leading edges that

point toward the general direction of the micropipette (mean ± SD; Student’s

t test).
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impact of PIP5K1C-90 polarization on chemoattractant-regu-

lated neutrophil polarization and directional response. Mouse

neutrophils expressing RFP-PIP5K1C-90 were placed on fibrin-

ogen, followed by directional stimulation with fMLP. To assess

real-time neutrophil responses, the cells were also cotransfected

with YFP-actin (Figure 5A). The stimulation was applied either

proximally or distally to polarized RFP-PIP5K1C-90 as shown

in Figure 5A. Upon stimulation, the cells responded in about

30 s evidenced by polarized distribution of YFP-actin toward

the micropipette (Movie S6). This polarized distribution of YFP-

actin is presumably the result of rapid formation of F-actin, which

primarily occurs at the lamellipodia upon chemoattractant stim-

ulation.

Regardless of the positions of the stimulation, which did not

markedly affect the rate of YFP-actin polarization, YFP-actin

always started to polarize at the sites opposite to polarized

RFP-PIP5K1C-90 (Figure 5A; Figure S4E, Movies S6 and S7).

These observations indicate that the initial polarization of YFP-

actin or formation of leading edges is determined by the location

of PIP5K1C-90 polarization rather than the fMLP gradient. It is

also important to note that cells with their PIP5K1C-90-rich

structures near the pipette often started with more than one

pseudopod pointing to different directions, which were always

against the gradient (Figure 5A, lower panels; Figure S4E, lower

panels, arrowheads). Although these pseudopods eventually

formed consolidated singular lamellipodia, it took significantly

longer for them to do so than for those with their PIP5K1C-90-

rich structures distal to the pipette (Figure 5B). In a majority of

cells that were stimulated by a pipette proximal to the

PIP5K1C-90-rich structures, their lamellipodia were able, at the

end, to turn toward the stimulation. Thus, we conclude that

integrin-induced polarization of PIP5K1C-90 has an important

role in regulating neutrophil response to directional chemoat-

tractant stimulation. It determines where the leading edge,

whose formation is stimulated by chemoattractants, can be

initially formed regardless of the directional cue of a chemoat-

tractant gradient, probably by specifying the uropod.

PIP5K1C Deficiency Impairs Neutrophil Adherence
to Endothelial Cells
Knowing that PIP5K1C deficiency does not impede neutrophil

chemotaxis, we sought other possible causes for the in vivo infil-

tration defects of Pip5k1c�/� neutrophils observed in Figure 1.

We examined the interaction between neutrophils and endothe-

lial cells, the first step in neutrophil infiltration in vivo, via a flow

chamber assay. PIP5K1C deficiency significantly reduced the

number of neutrophils that can firmly adhere to endothelial cells

(Figure S5A). This defect may provide an explanation to the

in vivo infiltration defects.

Intravital microscopic examination of the cremaster muscle

venules was carried out to confirm the in vivo significance of

the adhesion defect. Although PIP5K1C deficiency increased

rolling flux, it reduced the number of cells adherent to the endo-

thelium upon the treatment of TNF-a, particularly in the smaller

vessels (Figures 6A and 6B). PIP5K1C deficiency had little

effects on rolling velocity or rate of emigration (Figures 6C and

6D). These observations are consistent with those observed in

the flow chambers and demonstrate that PIP5K1C is important

for neutrophil firm adherence to endothelial cells in vivo.
Im
PIP5K1C-90 Is Involved in Polarized Activation of RhoA
and fMLP-Stimulated Integrin Affinity Increases
Because there were no differences in the cell surface expression

of CD18 (b2-integrins) between wild-type and Pip5k1c�/� cells

(Figure S5B), the differences in their adherence to endothelial

cells have to be attributed to other factors. RhoA, which is

activated by endothelial cell-tethered chemokines, plays an

important role in regulating monocyte and T cell adherence to

endothelial cells under flow conditions (Giagulli et al., 2004;

Honing et al., 2004). We found that PIP5K1C deficiency signifi-

cantly reduced fMLP-induced activation of RhoA (Figure 7A).

Consistent with this result, PIP5K1C deficiency decreased
munity 33, 340–350, September 24, 2010 ª2010 Elsevier Inc. 345
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Figure 6. Effect of PIP5K1C Deficiency on

Neutrophil-Endothelial Cell Interaction in

Inflamed Cremaster Muscle Venues

Rolling flux (A), adhesion (B), rolling cell velocity

(C), and emigration of neutrophils (D) were deter-

mined after stimulation of the cremaster muscle

with TNF-a (0.5 mg) for 4 hr according to different

vessel sizes (<30 mm = vessels between 20 and

30 mm of diameter; >30 mm = vessels between

30 and 45 mm of diameter). All values are means

of n = 3 animals (with 5 to 7 vessels per animal) ±

SEM.
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RhoA-dependent phosphorylation of MLC (Figures 7B and 7C).

Moreover, PIP5K1C deficiency decreased RBD staining at the

uropods of neutrophils stimulated with fMLP (Figure S6A). RBD

is a protein domain of rhotekin and preferentially binds to acti-

vated RhoA (Ren et al., 1999). All of these results indicate that

PIP5K1C has an important role in RhoA activation by fMLP in

mouse neutrophils.

RhoA is involved in chemokine-stimulated enhancement of

integrin affinity in T lymphocytes (Giagulli et al., 2004). Consis-

tent with the finding, PIP5K1C deficiency attenuated the binding

of sICAM-Fc complexed with a Fc antibody (Figure 7D;

Figure S6B) or sICAM directly conjugated with a fluorochrome

(Figure S6C) to fMLP-stimulated neutrophils, without effects

on the expression of cell surface b2-integrins (Figure S5B;

data not shown). In addition, dnRhoA expression (Figure 7E) or

Y-27632 treatment (Figure S6D) could reduce ICAM binding in

response to fMLP. Moreover, PIP5K1C deficiency or inhibition

of Rock reduced the ability of neutrophils to retain their adhesion

to the endothelial cells under high shear flow (Figure S6E).

Together with the lack of obvious effect of PIP5K1C deficiency

on integrin clustering or lateral mobility (Figure S6F), we

conclude that PIP5K1C may regulate neutrophil firm adhesion

primarily through facilitating RhoA activation and integrin affinity

increase.

PIP5K1C-Mediated RhoA Activation Polarization
Has Biological Significance
The next key question is whether PIP5K1C polarization has

biological significance. We addressed this question by

comparing the two PIP5K1C isoforms: PIP5K1C-90 that can

be polarized by integrins and PIP5K1C-87 that cannot.

Expression of RFP-PIP5K1C-90 in Pip5k1c�/� neutrophils

restored polarized localization of PLC d-PH-GFP or PtdIns(4,5)

P2 production at uropods (Figure S6G), whereas PLC d-PH-
346 Immunity 33, 340–350, September 24, 2010 ª2010 Elsevier Inc.
GFP showed even distribution in

cells expressing RFP-PIP5K1C-87 (Fig-

ure S6G). Upon fMLP stimulation,

expression of either GFP-PIP5K1C-90

or -87 increased pMLC staining, a surro-

gate marker for RhoA activity (Figure 7F),

which was only weakly detected in

Pip5k1c�/�neutrophils (Figure 7C).

Expression of a kinase-dead form of

GFP-PIP5KIC-87 led to little increases

in pMLC staining in Pip5k1c�/� neutro-
phils (Figure S6H), suggesting that the lipid kinase activity or

PtdIns(4,5)P2 may be responsible for the increase in pMLC

and RhoA activity. However, there were two important distinc-

tions between cells expressing GFP-PIP5K1C-90 and those

expressing GFP-PIP5K1C-87. First, pMLC staining in GFP-

PIP5K1C-90-expressing cells was highly polarized and concen-

trated at the vicinity of polarized GFP-PIP5K1C-90 (Figure 7F),

whereas in cells expressing GFP-PIP5K1C-87, pMLC staining

was broadly distributed similarly to the distribution of GFP-

PIP5K1C-87 (Figure 7F). Second and more importantly, neutro-

phils expressing GFP-PIP5K1C-87 failed to form F-actin-rich

lamellipodia, whereas those expressing GFP-PIP5K1C-90 did,

in response to fMLP (Figure 7F). F-actin detected in GFP-

PIP5K1C-87-expressing neutrophils was colocalized with

GFP-PIP5K1C-87 and pMLC and appeared to resemble cortical

actin. Expression of the kinase-dead form of GFP-PIP5K1C-87

did not affect the formation of F-actin-rich lamellipodia

(Figure S6H), indicating that the effect of PIP5K1C-87 expres-

sion on lamellipodium formation depends on PtdIns(4,5)P2.

These results collectively suggest that although expression of

PIP5K1C was able to restore fMLP-induced phosphorylation of

MLC and probably RhoA activation, polarized localization

of PIP5K1C-90, which is expressed much more than PIP5K1C-

87 in mouse neutrophils, is required for polarized activation of

RhoA. Failure to do so as in the case of expression of the nonpo-

larizable PIP5K1C-87 isoform would result in broad activation of

RhoA and the inability to form lamellipodia. Consistent with the

idea that lamellipodia are required for neutrophils to undergo

transendothelial migration, neutrophils expressing PIP5K1C-87

showed markedly attenuated ability to migrate across a layer

of endothelial cells in response to fMLP (Figure 7G). Therefore,

polarized localization of PIP5K1C, manifested by integrin-

induced PIP5K1C-90 polarization (Figure S6I), has important

roles in regulating neutrophil polarization and infiltration.
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Figure 7. Effect of PIP5K1C Deficiency on

Endothelial Adhesion and RhoA Regulation

(A) Effect of PIP5K1C deficiency on fMLP-induced

activation of RhoA. Wild-type and PIP5K1C null

neutrophils were stimulated with 4 mM fMLP.

n = 4, *p < 0.05 (Student’s t test).

(B and C) Effect of PIP5K1C deficiency on fMLP-

induced MLC phosphorylation. Wild-type and

PIP5K1C neutrophils were stimulated with 4 mM

fMLP. Phosphorylated MLC levels were analyzed

by western blotting, quantified by densitometry,

and normalized against the actin levels (B; n = 2,

means ± standard errors) or immunostaining by

an anti-pSer19 MLC antibody (C).

(D) Effect of PIP5K1C deficiency on fMLP-stimu-

lated enhancement in ICAM binding. Wild-type

and PIP5K1C-deficient neutrophils were stimu-

lated with fMLP for 2 min and stained with re-

combinant ICAM-Fc complexed with Alexa-633-

anti-human Fc secondary antibody. Cells were

then analyzed by a flow cytometer and mean fluo-

rescence intensity (MFI) is shown. The experi-

ments were carried out in triplicates and the data

are presented as means ± SEM. *p < 0.01 versus

controls (Student’s t test).

(E) Effect of RhoA dominant-negative mutant on

fMLP-stimulated enhancement in ICAM binding.

Wild-type neutrophils were transfected with GFP-

dnRhoA and stimulated with fMLP for 2 min, fol-

lowed by staining and analysis as in (D). MFI of

ICAM staining of GFP-positive neutrophils were

compared with those of GFP-negative ones. The

experiments were carried out in triplicates, and

the data are presented as means ± SEM.

*p < 0.01 versus WT controls (Student’s t test).

(F) Effects of expression of PIP5K1C isoforms on

lamellipodia formation and MLC phosphorylation

in PIP5K1C null neutrophils stimulated with 4 mM

fMLP. PIP5K1C null neutrophils were transfected

with GFP-PIP5K1C-90 or GFP-PIP5K1C-87 and

placed on fibrinogen. They were stained with an

antibody specific to pSer19 MLC, followed with

a TRITC-conjugated secondary antibody and

Alexa-633 phalloidin. The cells were then exam-

ined with a confocal microscope. Images are

presented with pseudocolors. n > 8 for each

observation, and representative images are

shown. Scale bars represent 8 mm.

(G) Effect of GFP-PIP5K1C-87 expression on transendothelial migration. Neutrophils were transfected with GFP-PIP5K1C-90 or RFP-PIP5K1C-87. Equal

numbers of transfected cells were tested for their ability to transmigrate through endothelial cells under an fMLP gradient in a transwell chamber assay.

Immunity

Integrins Polarize PIP5K1C and Neutrophils
DISCUSSION

Here we showed that integrins can confer a polarity to neutro-

phils by inducing polarized localization of PIP5K1C-90 indepen-

dently of chemoattractants. This integrin-induced polarity has

important roles in neutrophil polarization and infiltration.

Although integrins have been shown to regulate cell motility,

they are not known to regulate neutrophil polarization or

directionality. Thus, our findings have revealed previously under-

appreciated roles of integrin signaling in regulating neutrophil

functions.

The evidence presented in this report implicated an important

role of vesicle transport in integrin-induced PIP5K1C-90 polari-
Im
zation. The evidence includes an impediment of PIP5K1C-90

polarization by AP2 interaction mutations on PIP5K1C-90, polar-

ized distributions of AP2 and clathrin by integrin engagement

and their colocalization with PIP5K1C-90, and inhibition of the

polarization by dnArf6. Because the vesicle transport may be

a continuous process, clathrin and AP2may have to be recycled.

Thus, there should be a mechanism for the dissociation of

PIP5K1C-90 from AP2. Tyr649 phosphorylation of PIP5K1C-

90, which was probably carried out by Src and Fak and detected

in polarized PIP5K1C-90 structure, may provide such a mecha-

nism because the phospho-mimetic mutation of Tyr649 reduces

the interaction with AP2. Based on these data, we propose

a model to suggest that integrin engagement may stimulate
munity 33, 340–350, September 24, 2010 ª2010 Elsevier Inc. 347
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Arf6-dependent vesicle transport, which brings AP2-associated

PIP5K1C-90 to one side of a cell. The directionality of the trans-

port may be determined by the cell movement direction prior to

its arrest. Fak- and Src-mediated phosphorylation may subse-

quently result in the dissociation of PIP5K1C-90 from AP2. AP2

might be recycled, whereas PIP5K1C-90 stayed. It remains

unknown how cell movement direction determines the direction-

ality of vesicle transport and the location of PIP5K1C-90 polari-

zation and whether additional modifications of PIP5K1C-90 or

its interaction with other molecules are required for its final,

more consolidated localization. It is also not known how integrin

engagement triggers the polarization process. Engaged integ-

rins may either accelerate basal endocytic or endosomal vesicle

trafficking or are the cargos that initiate the trafficking.

Current concepts regard chemoattractants as the sole regula-

tors of polarization and directionality in chemotaxis. It is also

believed that chemoattractants polarize the cell by specifying

the ‘‘front’’ and ‘‘back’’ through polarized localization and/or

activation of signaling and structural molecules at both leading

edges and uropods. The results of this study extend the

concepts to suggest that signaling other than elicited by chemo-

attractants can also break the symmetry and polarize the neutro-

phils. In this case, integrin-induced polarization specifies the

back without mobilizing the front signaling molecules. Impor-

tantly, this integrin-regulated back signaling is dominant enough

to determine the initial polarity, along which chemoattractants

have to polarize their front and back signals. Our results also

confirm that chemoattractant-controlled fronts, once formed,

become more dominant, which can lead a direction change if

the cell polarity is not aligned with the chemoattractant gradient.

Therefore, chemotactic directionality determination may be the

result of the summation of signaling inputs of multiple pathways

in a context-dependent manner. On a different note, this effect of

integrin-PIP5K1C-90-regulated polarization on initial neutrophil

directionality provides an explanation to the poor initial direction-

ality on fibrinogen as well as the heterogeneity in neutrophil

chemotactic directionality often observed in many of the

in vitro assays. In these assays, the neutrophils may have taken

an initial polarity because of integrin signaling, which is random

to the chemoattractant gradient applied afterward. The more in-

tegrin activation as in the case of fibrinogen coating may cause

more cells to take up the initial polarity and thus higher direc-

tional errors.

The integrin-PIP5K1C-90-regulated polarization intersects

chemoattractant-regulated polarity at RhoA regulation. Chemo-

attractants are long known to activate RhoA at the uropods, but

the mechanisms for such polarized activation remain unclear.

PDZ-RhoGEF, which contains a PH domain, was found to be

localized at uropods and appeared to regulate uropod RhoA

activation in neutrophil-like HL-60 cells (Wong et al., 2007;

Xu et al., 2003). We are currently investigating whether

PIP5K1C-90 and PtdIns(4,5)P2 can regulate PDZ-RhoGEF local-

ization or activity.

Our data also showed an incomplete abrogation of RhoA acti-

vation by PIP5K1C deficiency. Thismay be attributed to the exis-

tence of other RhoA activation mechanisms and/or PIP5K1 iso-

forms. Human PIP5K1B is also polarized at the uropod upon

chemoattractant stimulation in neutrophil-like HL-60 cells

(Lacalle et al., 2007). However, our analysis of neutrophils iso-
348 Immunity 33, 340–350, September 24, 2010 ª2010 Elsevier Inc.
lated from mice lacking human PIP5K1B ortholog PIP5K1A

(Sasaki et al., 2005) revealed no chemotactic, RhoA activation

or adhesion defects compared to the wild-type neutrophils

(data not shown). It also remains unclear whether the kinase

activity of PIP5K1C is regulated during the polarization process.

Both Arf6 and RhoA have been shown to activate its activity

(Bolomini-Vittori et al., 2009; Honda et al., 1999; Krauss et al.,

2003). It is possible that RhoA and PIP5K1C constitute a positive

feed-forward mechanism for the production of PtdIns(4,5)P2 at

uropods.

The results in this study suggest that the biological significance

of PIP5K1C and its polarization upon integrin engagement may

not lie in its regulation of neutrophil chemotaxis but rather its infil-

tration through the endothelium. On one hand, PIP5K1C facili-

tates RhoA activation, which leads to the increase in integrin

affinity required for neutrophil firm adhesion to the endothelium.

In contrast, PIP5K1C-90 polarization is required for polarized

RhoA activation. RhoA is known to antagonize Rac, which is

required for the formation of F-actin and hence lamellipodium.

Without lamellipodia, cells cannot undergo migration. Thus, two

competing activities (RhoA-mediated firm adhesion and Rac-

mediated formation of lamellipodia for cell migration) have to

occur in the same cell for successful neutrophil infiltration. Polar-

ized activation of RhoA through integrin-induced PIP5K1C-90

polarization provides a solution for these two competing biolog-

ical activities to occur concomitantly in the same cell. Thus,

PIP5K1C has two critical roles in regulating neutrophil infiltration

in vivo; whereas its role in facilitating RhoA activation by chemo-

attractants regulates endothelial cell adhesion, its role in polar-

izing RhoA activation helps evade the suppressive effect of

RhoA activation on the formation of lamellipodia that is required

for neutrophil extravasation and migration.

EXPERIMENTAL PROCEDURES

Reagents and Constructs

Wild-type GFP-PIP5K1C-90 and the antibody specific for PIP5K1C-90 (Di

Paolo et al., 2002) were kindly provided by P. De Camilli. Plasmids encoding

FRNK and Y397-FAK were gifts from J.L. Guan. The antibody specific for

Tyr649 of PIP5K1C-90 was generated by AbMax (Beijing, China). The

PIP5K1C mutants were generated by PCR-based mutagenesis and verified

by nucleotide sequencing. GFP-PH-PLCd was a gift from A. Smrcka. Talin

antibody was purchased from Sigma. Phospho-MLC antibody was obtained

from Cell Signaling. Anti-mouse b2 integrin blocking antibody (GAME-46)

was purchased from BD Biosciences PharMingen. Blocking antibodies to

aM (Clone M1/70) and aL (Clone M17/4) integrins were purchased from eBio-

sciences. YFP-b-actin was described previously (Kress et al., 2009).

Mice and Bone Marrow Transplantation

PIP5K1C-deficientmice have been previously described (Di Paolo et al., 2004).

Liver cells (2 million) from neonatal wild-type or PIP5K1C null mice were trans-

planted into wild-type recipient mice that had been subjected to 1000 cGy

X-ray irradiation. Eight weeks later, the transplanted mice were used for

neutrophil preparation. All mouse work described in this study was reviewed

and approved by the Institutional Animal Care and Use Committee (IACUC)

of Yale University prior to the commencement of the work.

Neutrophil Isolation, Transfection, Staining, and Migration and Flow

Chamber Assays

Bonemarrow neutrophils were purified frommouse bonemarrow, transfected,

stained, and assayed for its migration in Dunn chambers and transwell plates

as described previously (Zhang et al., 2010). The detailed protocols are also

described in the Supplemental Experimental Procedures.
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PIP5K1C Polarization Assay

Coverslips were coated with 1 mM polylysine or 100 mg/ml fibrinogen at 37�C
for 1 hr. Neutrophils were plated onto the coverslips for 10 min. In some exper-

iment, neutrophils were pretreated with PTX (1 mg/ml for 2 hr at 37�C), PP2
(10 mM for 15 min), Y-27632 (10 mM for 15 min), or Cytochalasin D (10 mM for

15 min). The cells were then fixed with 4% paraformaldehyde and examined

by using Leica SP5 confocal microscope.

Flow Chamber Assay

Mouse endothelial cells (Wang et al., 2007b) were cultured to confluency on

10 mg/ml fibronectin-coated coverslips and treated with 50 ng/ml TNF-a for

4 hr. The coverslips containing the endothelial cell layer were washed with

PBS and placed in a flow chamber apparatus (GlycoTech). Purified wild-

type and PIP5K1C null neutrophils were labeled with CFSE and FarRed

SSAO SE. Dye, respectively, at 37�C for 15 min and then mixed at a 1:1 ratio.

The mixed neutrophils were placed on top of the endothelial cells and

subjected to sheer flow of 1 dyne/cm2 for 1 min. The cells were then fixed,

and the number of neutrophils adhering to the endothelial cells was counted

with a fluorescencemicroscope. For examining directionality, neutrophils tran-

siently transfected with GFP-PIP5K1C-90 were flowed through the chamber

coated with a monolayer of mouse endothelial cells as described above.

To test the adherence under high sheer stress, wild-type and PIP5K1C null

or Y-27632-treated neutrophils labeled with CFSE and FarRed SSAO SE. Dye,

respectively, or vice versa were allowed to sediment to the monolayer endo-

thelial cells for 10 min in the chamber. The sheer stress was gradually ramped

up to 4 dyn/cm2 in 10 min. Images sequences were taken at 15 s intervals. The

numbers of wild-type and PIP5K1C null cells or Y-27632-treated WT cells

attached to the endothelium at first min were confirmed to be no more than

2.5% different. The numbers of untreated wild-type cells adhered to endothe-

lial at the end of recording are taken as 1.

Determination of Active RhoA Level and ICAM-Binding Assay

The levels of active GTP-bound RhoA were determined with a G-LISA RhoA

Activation Assay kit (Cytoskeleton, Inc). One million of wild-type or PIP5K1C

null neutrophils were stimulated with mock or 4 mM fMLP for 3 min before

the assay. The ICAM binding assay was carried out as previously described

(Konstandin et al., 2006). Detailed protocols for ICAM binding and integrin

clustering are described in the Supplemental Experimental Procedures.

In Vivo Neutrophil Infiltration Assays and Intravital Microscopy

Neutrophil recruitment to the peritonitis and MSU-induced gout was carried

out as described (Di Lorenzo et al., 2009; Jia et al., 2007). Neutrophil infiltration

in the mouse cremaster muscle venules was performed as previously

described (Liu et al., 2005). The detailed protocols are also described in the

Supplemental Experimental Procedures.

RT-PCR

Total RNA was isolated from purified wild-type or PIP5K1C null neutrophils via

TRIzol. The cDNA was synthesized with iScript cDNA synthesis kit (Bio-Rad),

and qPCR was carried out with PIP51A-, 1B-, and 1C-specific oligos.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and seven movies and can be found with this article online at

doi:10.1016/j.immuni.2010.08.015.
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